Logging examples in Python
OpenAI Streamlit agent
Getting Started
Analytics
Connectors
- Python
- Log to phospho with Python
- Logging examples in Python
- Analyze your logs in Python
- Discover the Lab
- Testing with Python
- JavaScript
- Langchain & Langsmith
- Langfuse
- Supabase
Integrations
- Argilla
- PostgreSQL
- PowerBI
- Pandas
Models API
Logging examples in Python
OpenAI Streamlit agent
Streamlit webapp with an OpenAI chatbot
This is a demo Streamlit webapp that showcases a simple assistant agent whose response are logged to phospho.
This demo shows how you can use phospho to log a complex stream of tokens.
Installation
pip install --upgrade phospho streamlit openai
Setup
Create a secrets file examples/.streamlit/secrets.toml
with your OpenAI API key
PHOSPHO_PROJECT_ID=...
PHOSPHO_API_KEY=...
OPENAI_API_KEY="sk-..." # your actual key
Script
import streamlit as st
import phospho
from openai import OpenAI
from openai.types.chat import ChatCompletionChunk
from openai._streaming import Stream
st.title("Assistant") # Let's do an LLM-powered assistant !
# Initialize phospho to collect logs
phospho.init(
api_key=st.secrets["PHOSPHO_API_KEY"],
project_id=st.secrets["PHOSPHO_PROJECT_ID"],
)
# We will use OpenAI
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
# The messages between user and assistant are kept in the session_state (the browser's cache)
if "messages" not in st.session_state:
st.session_state.messages = []
# Initialize a session. A session is used to group interactions of a single chat
if "session_id" not in st.session_state:
st.session_state.session_id = phospho.new_session()
# Messages are displayed the following way
for message in st.session_state.messages:
with st.chat_message(name=message["role"]):
st.markdown(message["content"])
# This is the user's textbox for chatting with the assistant
if prompt := st.chat_input("What is up?"):
# When the user sends a message...
new_message = {"role": "user", "content": prompt}
st.session_state.messages.append(new_message)
with st.chat_message("user"):
st.markdown(prompt)
# ... the assistant replies
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_str_response = ""
# We build a query to OpenAI
full_prompt = {
"model": "gpt-3.5-turbo",
# messages contains the whole chat history
"messages": [
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
# stream asks to return a Stream object
"stream": True,
}
# The OpenAI module gives us back a stream object
streaming_response: Stream[
ChatCompletionChunk
] = client.chat.completions.create(**full_prompt)
# ----> this is how you log to phospho
logged_content = phospho.log(
input=full_prompt,
output=streaming_response,
# We use the session_id to group all the logs of a single chat
session_id=st.session_state.session_id,
# Adapt the logging to streaming content
stream=True,
)
# When you iterate on the stream, you get a token for every response
for response in streaming_response:
full_str_response += response.choices[0].delta.content or ""
message_placeholder.markdown(full_str_response + "▌")
# If you don't want to log every streaming chunk, log only the final output.
# phospho.log(input=full_prompt, output=full_str_response, metadata={"stuff": "other"})
message_placeholder.markdown(full_str_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_str_response}
)
Launch the webapp:
streamlit run webapp.py
Was this page helpful?